row_mean()
- Calculate the row-wise mean of selected varaibles.row_sum()
- Calculate the row-wise sum of selected varaibles.row_max()
- Calculate the row-wise maximum of selected varaibles.row_min()
- Calculate the row-wise minimum of selected varaibles.row_median()
- Calculate the row-wise median of selected varaibles.row_var()
- Calculate the row-wise variance of selected varaibles.row_sd()
- Calculate the row-wise standard deviation of selected varaibles.row_unique()
- Calculate the row-wise number of unique values of selected varaibles.row_miss()
- Calculate the row-wise number of missing values of selected varaibles.row_non_miss()
- Calculate the row-wise number of non-missing values of selected varaibles.
Usage
row_mean(...)
row_sum(...)
row_max(...)
row_miss(...)
row_non_miss(...)
row_min(...)
row_median(...)
row_var(...)
row_sd(...)
row_unique(...)
Examples
tb <- tibble::tibble(
x = 1:10,
y = 11:20,
z = 21:30
)
row_mean(tb)
#> # A tibble: 10 × 1
#> value
#> <dbl>
#> 1 11
#> 2 12
#> 3 13
#> 4 14
#> 5 15
#> 6 16
#> 7 17
#> 8 18
#> 9 19
#> 10 20
row_sum(tb)
#> # A tibble: 10 × 1
#> value
#> <dbl>
#> 1 33
#> 2 36
#> 3 39
#> 4 42
#> 5 45
#> 6 48
#> 7 51
#> 8 54
#> 9 57
#> 10 60
row_non_miss(tb)
#> # A tibble: 10 × 1
#> value
#> <dbl>
#> 1 3
#> 2 3
#> 3 3
#> 4 3
#> 5 3
#> 6 3
#> 7 3
#> 8 3
#> 9 3
#> 10 3
tb %>%
dplyr::mutate(
mean = row_mean(x, y),
sum = row_sum(x, y)
)
#> # A tibble: 10 × 5
#> x y z mean sum
#> <int> <int> <int> <dbl> <dbl>
#> 1 1 11 21 6 12
#> 2 2 12 22 7 14
#> 3 3 13 23 8 16
#> 4 4 14 24 9 18
#> 5 5 15 25 10 20
#> 6 6 16 26 11 22
#> 7 7 17 27 12 24
#> 8 8 18 28 13 26
#> 9 9 19 29 14 28
#> 10 10 20 30 15 30