codebook()
is a function to view the
codebook of a dataset or selected variables.
codebook_detail()
would show more detailed information.
It is a wrapper of datawizard::data_codebook()
with a better output format.
Usage
codebook(.data, ...)
codebook_detail(
.data,
...,
.type = c("flextable", "tibble"),
n = Inf,
max_values = 10,
range_at = 6,
verbose = TRUE
)
Arguments
- .data
The input data (data frame or tibble).
- ...
<
tidy-select
> or <data-masking
> Variables to include in the codebook. This argument can be omitted.- .type
The output type. Default for
codebook_detail()
is"flextable"
.- n
The number of rows to display. Default is
Inf
.- max_values
Number of maximum values that should be displayed. Can be used to avoid too many rows when variables have lots of unique values.
- range_at
Indicates how many unique values in a numeric vector are needed in order to print a range for that variable instead of a frequency table for all numeric values. Can be useful if the data contains numeric variables with only a few unique values and where full frequency tables instead of value ranges should be displayed.
- verbose
Toggle warnings and messages on or off.
Examples
starwars
#> # A tibble: 87 × 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 NA gold yellow 112 none mascu…
#> 3 R2-D2 96 32 NA white, bl… red 33 none mascu…
#> 4 Darth V… 202 136 none white yellow 41.9 male mascu…
#> 5 Leia Or… 150 49 brown light brown 19 fema… femin…
#> 6 Owen La… 178 120 brown, gr… light blue 52 male mascu…
#> 7 Beru Wh… 165 75 brown light blue 47 fema… femin…
#> 8 R5-D4 97 32 NA white, red red NA none mascu…
#> 9 Biggs D… 183 84 black light brown 24 male mascu…
#> 10 Obi-Wan… 182 77 auburn, w… fair blue-gray 57 male mascu…
#> # ℹ 77 more rows
#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> # vehicles <list>, starships <list>
codebook(starwars)
#> # A tibble: 14 × 4
#> variable type n unique
#> <chr> <chr> <int> <int>
#> 1 name character 87 87
#> 2 height integer 81 45
#> 3 mass double 59 38
#> 4 hair_color character 82 12
#> 5 skin_color character 87 31
#> 6 eye_color character 87 15
#> 7 birth_year double 43 36
#> 8 sex character 83 4
#> 9 gender character 83 2
#> 10 homeworld character 77 48
#> 11 species character 83 37
#> 12 films list 87 24
#> 13 vehicles list 87 11
#> 14 starships list 87 17
codebook(starwars, 1:4)
#> # A tibble: 4 × 4
#> variable type n unique
#> <chr> <chr> <int> <int>
#> 1 name character 87 87
#> 2 height integer 81 45
#> 3 mass double 59 38
#> 4 hair_color character 82 12
codebook(starwars, ends_with("color"))
#> # A tibble: 3 × 4
#> variable type n unique
#> <chr> <chr> <int> <int>
#> 1 hair_color character 82 12
#> 2 skin_color character 87 31
#> 3 eye_color character 87 15
codebook(starwars, where(is.numeric))
#> # A tibble: 3 × 4
#> variable type n unique
#> <chr> <chr> <int> <int>
#> 1 height integer 81 45
#> 2 mass double 59 38
#> 3 birth_year double 43 36
codebook(lifeexp)
#> # A tibble: 6 × 5
#> variable label type n unique
#> <chr> <chr> <chr> <int> <int>
#> 1 region Region double+label 68 3
#> 2 country Country character 68 68
#> 3 popgrowth Avg. annual % growth double 68 30
#> 4 lexp Life expectancy at birth double 68 18
#> 5 gnppc GNP per capita double 63 62
#> 6 safewater Safe water double 40 29
# codebook_detail() is less stable than codebook().
# Some column types may not be recognized.
lifeexp %>%
dplyr::select(-region) %>%
codebook_detail()
id
name
label
type
missings
values
n
prop
row_id
character
character
character
character
character
character
character
character
integer
1
country
Country
character
0 (0.0%)
Albania
1
1.5%
1
Argentina
1
1.5%
1
Armenia
1
1.5%
1
Austria
1
1.5%
1
Azerbaijan
1
1.5%
1
Belarus
1
1.5%
1
Belgium
1
1.5%
1
Bolivia
1
1.5%
1
Bosnia and Herzegovina
1
1.5%
1
Brazil
1
1.5%
1
(...)
1
1
2
popgrowth
Avg. annual % growth
numeric
0 (0.0%)
[-0.5, 3]
68
2
2
3
lexp
Life expectancy at birth
numeric
0 (0.0%)
[54, 79]
68
3
3
4
gnppc
GNP per capita
numeric
5 (7.4%)
[370, 39980]
63
4
4
5
safewater
Safe water
numeric
28 (41.2%)
[28, 100]
40
5
5
n: 20